A Compendium of Application Circuits for Intersil Digitally-Controlled (XDCP) Potentiometers

Introduction

This application note lists a number of application circuits for Intersil's digitally-controlled (XDCP) potentiometers. The application circuits illustrate the wide variety of possible functions which can be implemented using the variability of the potentiometer in conjunction with standard active devices like operational amplifiers and comparators. The types of circuits include control circuits, converters, filters, signal processing circuits, regulators, wave shapers, analog computing circuits and signal sources. The circuits are shown in basic form and do not include supply decoupling or proper grounding techniques. The user must account for these in the final design.

Intersil's potentiometers are controlled through the 2-wire, $\mathrm{I}^{2} \mathrm{C}$, 3 -wire, or SPI computer serial-interfaces or buses. For front panel, push button type applications, Intersil's push pots are recommended.

Electronic digitally-controlled (XDCP) potentiometers provide three powerful application advantages:

1. The variability and reliability of a solid-state potentiometer.
2. The flexibility of computer-based digital controls.
3. The retentivity of nonvolatile memory used for the storage of multiple potentiometer settings or data.
In addition, the packages of the potentiometers are completely compatible with other electronic components and hence reduce manufacturing assembly costs.

Applications

FIGURE 1. BASIC CONFIGURATIONS OF ELECTRONIC POTENTIOMETERS

Application Circuits

FIGURE 2. BUFFERED REFERENCE VOLTAGE

$$
V_{O}=\left(1+R_{2} / R_{1}\right) V_{S}
$$

FIGURE 4. NONINVERTING AMPLIFIER

FIGURE 6. OFFSET VOLTAGE ADJUSTMENT

FIGURE 3. CASCADING TECHNIQUES

$V_{O}(R E G)=1.25 V\left(1+R_{2} / R_{1}\right)+l_{\text {adj }} R_{2}$

FIGURE 5. VOLTAGE REGULATOR

$V_{\mathrm{UL}}=\left\{\mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right\} \mathrm{V}_{\mathrm{O}}($ MAX $)$
$\mathrm{V}_{\mathrm{LL}}=\left\{R_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right\} \mathrm{V}_{\mathrm{O}}($ MIN $)$

FIGURE 7. COMPARATOR WITH HYSTERISIS

Application Circuits (continuad)

FIGURE 8. ATTENUATOR

$$
\begin{aligned}
& V_{O}=G V_{S} \\
& G=-R_{2} / R_{1}
\end{aligned}
$$

FIGURE 10. INVERTING AMPLIFIER

FIGURE 12. FUNCTION GENERATOR

Application Note 1145

Application Circuits (continuad)

$V_{O} / I_{S}=-R_{3}\left(1+R_{2} / R_{1}\right)+R_{2}$

FIGURE 13. I TO V CONVERTER

$\Varangle \mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{S}}=180^{\circ}-2 \tan ^{-1} \omega \mathrm{RC}$
FIGURE 15. PHASE SHIFTER

FIGURE 14. CURRENT SOURCE

$$
C_{I N}=C\left(1+R_{2} / R_{1}\right)
$$

FIGURE 16. CAPACITANCEV MULTIPLIER

FIGURE 17. ABSOLUTE VALUE AMPLIFIER WITH GAIN

Application Note 1145

Application Circuits (continued)

FIGURE 18. LEVEL DETECTOR

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T}}>\mathrm{V}_{\mathrm{W}}, \mathrm{v}_{\mathrm{OUT}}=\mathrm{HIGH} \\
& \mathrm{v}_{\mathrm{T}}<\mathrm{v}_{\mathrm{W}}, \mathrm{v}_{\mathrm{OUT}}=\mathrm{LOW}
\end{aligned}
$$

FIGURE 19. LEVEL DETECTOR

Frequency $\propto R$, C
Duty Cycle $\propto \mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{3}}$

FIGURE 20. OSCILLATOR

Application Note 1145

Application Circuits (continuad)

FIGURE 21. TIME DELAY

